EXTENSION REPORT

ARCHITECTURE AND DESIGN

ADDITIONS/CHANGES TO REQUIREMENTS
The complete extension of the software we have chosen, ‘When Planes Collide”, demands that the additional requirements

received from the client be satisfied in the final product. The additional requirements are:

AER 1. Each airspace in your game must contain at least 2 landing and take-off options.
AER 2. Add a multiplayer mode to the game, so that (at least) two controllers may compete.
AER 3. Add a handover facility to the game, so that one player can pass responsibility for a flight to the other player.

These requirements are additions to previous requirements > given by the client. The non-functional requirements” which
were used in previous assessments have not changed and are still being used for testing both the initial game and resulting
game. The aim of this extension project is to create a solution that effectively builds on the original solution we have received,
while ensuring that the previous requirements are still satisfied where practical and additional requirements are satisfied.

Though we intended to keep many previous requirements” satisfied in the extended game, satisfying some of these previous
requirements would have hindered the success of the extended game. Also, some of these previous requirements were not
used because the element which they referred to has now been updated to improve the user’s experience with the software.
These requirements and the rationale behind them being exempted from influencing the extension of the software are
documented in the test report.

The process of eliminating these requirements was part of our effort to modify the previous requirements to be in accord
with the additional requirements we received; we did this so they could be effectively used for regression requirement testing.
The process of eliminating requirements that would not be used is also a part of our basic software extension engineering
approach®specified in assessment three.

SR10 which required the game to automatically save scores has been removed as a requirement, this is because we do not
intend to have a high scores list in the menu and SR10 would have been part of implementing this feature. SR11 has also been
removed for this same reason.

SR15 which required the ability to alter a flight plan has been removed, this is because the game’s controls have been
switched from mouse to keyboard controls, this makes implementing this feature unfeasible and also may not have been
desired in multiplayer gameplay. SR24 which required the game to simulate bad weather to provide a greater challenge to the
players has been relaxed because it is difficult to implement and test, and is an extra feature which is not essential for basic
gameplay. SR25 which required the simulation of equipment failures has also been relaxed for the same reason.

ER4 which required the implementation of restrictions on how many flights could land and take off at the same time has been
removed, this is because the separation rules already enforce this restriction. ER7 and ER8 which are related to the
implementation of a high score list have also been removed and are not implemented because the high score list is not
required to satisfy the customer’s requirement. This was also an extra feature that would have been implemented if there was
more time.

! Game by Team PSA
? previous requirements listed in appendix.

CHALLENGES

1. Preliminary testing: As with assessment 3 and in accordance with our basic software extension engineering approach®
, the first thing we did to approach extending the software we received was to conduct preliminary testing -initial
regression testing®. During this process, we ran the built-in automated tests that came with the code base. We
received a total of 107 tests from team PSA and on the initial run of these tests; we had an overall 12.15% success
rate. The problem with this result was that it meant we had inherited error filled built-in tests that could not be used
for regression testing.

Our first approach to dealing with this problem was to disable 51 tests®. Some of the tests that were disabled included
those that were involved in testing the addition of flights to an airspace, the error in these tests was found to be due
to an infinite loop in the function that builds the flight plans, this function was rewritten as a for loop instead of the
initial while loop and the tests that were linked to this function were re-enabled. However, this solution only increased
the overall success rate to 23.21%.

To achieve a higher success rate, the tests that tested graphics content were removed, because there was no potential
for them to ever work in the JUnit environment, and more automated tests’® were built. After evaluating and
modifying the automated tests we received, we were left with 65 tests, all of which are effective and give a 93.85%
success rate.

Further tests were removed, reducing the number of initial regression tests to 63. However these tests were not
removed as part of solving this challenge/problem, they were removed because the functionality they were linked to
was removed from the software as it was not needed to satisfy the customer’s requirements; the functionality was an
extra feature.

2. Deciding game plot/mechanics: Deciding the ideal game plot/ mechanics that would satisfy the client’s requirements
was challenging. Deciding the game plot involved defining the scoring/penalisation procedure and rules because these
determine how the players perceive the game play or their aim/goal in the game. This was difficult because of the
client’s supplementary requirement for the multiplayer game to be “competitive and collaborative”. This gave rise to
a lot of brain-storming® within the team and also frequent meetings with the client. Striking a balance between these
two opposite ends of the spectrum initially seemed impossible, but we were able to draw up a game plot’ (solution)
within the team and negotiate this with the client who accepted our solution.

3. Time management: Time management during the completion of this 4™ assessment was a challenge. This was
majorly due to receiving error filled regression tests, the team not being able to arrive at a suitable game play decision
on time, and also due to a stall in work progress during the Easter holiday. This created a backlog of work that needed
to be completed before the deadline date, increased the work pressure and also meant we didn’t have much time to
arrange meetings with our client as we would have preferred to. We responded to this challenge by implementing an
agile methodology which meant that we organised out time and tasks by implementing sprints®, each member had to
inform other team members what they intended to complete by the next meeting; each team member’s goal was
then documented for the team to refer to. In general, we resolved this issue by abandoning our time plan from the
1% assessment because it couldn’t deal with time frame and workload we were now dealing with, and resolved to
contacting our client via email rather than arranging meetings (with an exception to when we conducted the
acceptance testing).

® The software engineering approach diagram used in assessment 3 is available in the appendix.
* Initial regression testing is documented in the test report

> The tests are documented in the test report

® possible ideas that rose from brain-storming sessions are in the appendix

” Final game plot is described in detail in the ‘Gameplay’ section of this report

® Agile sprints and initial time plan are in the appendix

4. Deciding implementation: Deciding how to implement the multiplayer functionality was also challenging, we had a
few substantial decisions to make and various options. The cores of the client’s requirement for a multiplayer game
could majorly be satisfied by a real-time based game, so it was easy to decide between implementing a real-time
versus turn based game. However, the main challenge in this area was deciding if the multiplayer game would be
implemented to work using a single computer or two computers.

In the case of using a single computer, we had to decide if we were going to implement the need for multiple player
controls as keyboard vs mouse or, if we were going to split a keyboard into two different controls; dividing the keys
amongst the two players. The latter was discussed to be a much better approach because it meant no player could be
at a disadvantage due to the type of control device they were using.

In the case of designing a game that required the players to be using different computers, we would need to
implement a network (client-server architecture) design. This idea was a potential idea because it required less editing
of the GUI.

To solve this challenge, we decided to look at all these options and decided to implement a game design that would
work using a single computer, where the players would be sharing a single keyboard. This decision was made because
of the potential networking problem we could have faced with matchmaking, especially since we doubted the ability
to complete such a design (given all the possible problems) within the time frame we had.

GAMEPLAY

e The Initial Gameplay’
Control: The original software we received was a single player game, it had three difficulty levels; easy, medium and
hard. The player experienced the world as an air traffic management controller through a bird’s eye view of the
airspace. The player could navigate the planes freely in the airspace, where the planes were subject to physical laws
and effect that dominate the airspace e.g. crashing.

The game was organized using a flight plan of waypoints that was randomly generated, and the aim of the player was
to successfully navigate each flight along the waypoints specified on their flight plan, and out of the airspace through
the exit point specified. The more way points they flew through, the more points they accumulated. The player had
the control of landing and changing the altitude, bearing, speed and flight plan of each flight. If two planes were too
close, a red line was drawn between them, warning them of a potential crash. If the player is unable to avoid the
crash, the planes explode and the game will then come to a halt.

Scoring and Achievement: In the initial game, ‘When Planes Collide’ by team PSA, the player got 60 points for every
minute played. For every waypoint they passed through within 30x30 pixels, they got 20, 50 or 100 points, depending
on how close they were to the waypoint. Negative points were given when the player changed the flight plan (-10),
and when the player lost the plane or it did not go through the exit point (-50).

Most importantly, the initial game we received had a gameplay that satisfied all the client’s requirements till the date
it was received.

* Description and justification of extended gameplay:
Control: The final product of this extension project is a multiplayer game, with a maximum of two players at a time.
Each player controls a set of colour coded flights using their designated block of keys on the keyboard, and the
objective for each player is to gain points in a similar manner to the single player experience explained above.

° More information about the gameplay can be found in the user manual attached to this document.

Changes in the gameplay from the single player game to the multiplayer game include the addition of a handover
command by which one player can pass control of their selected flight to the other player; this is a purely unilateral
decision. In order to discourage repeated handovers and prevent one player from swamping the other with their
flights, there is a score penalty applied for every time a player initiates a handover. There is also a five second cool
down period randomly placed on each player every time they complete a handover; during this period, the player
cannot use the handover command.

As opposed to the initial single player game, when two planes crash in this multiplayer version, the game doesn’t end
but there is a significant score penalty applied to the owner of each plane involved in the collision. The game ends
when one player reaches 3000 points; that player is then deemed the winner. There are also two different airports in
this extended version of the initial game. Each player can take-off and land their planes in any available airport of their
choice. However, in order to land a plane, it must be at its minimum speed and altitude; 1000ft and 200 miles per
hour, respectively.

Scoring and Achievement: Both players individually gain from events involving their flights in the same manner as the
initial single player game barring the two exceptions detailed above; handovers and crashes. The game ends when one
player reaches 3000 points, at which they are declared the winner. When a crash occurs 500 points are deducted for
each plane from the player or players involved in the crash. The handover penalty is 50 points for the player who
initiates the handover, the same penalty as when a flight leaves the airspace without having completed its flight plan.

Justification: The extended gameplay satisfies the client’s requirements. The multiplayer feature in the game satisfies
the client’s requirement, AER2; “add a multiplayer mode to the game, so that (at least) two controllers may compete”.
This extended feature is supported by having each player control a set of colour coded flights (red or blue), the set of
controls for each player are implemented by two separate blocks of keys on the keyboard.

The addition of an extra airport is another feature that has been implemented in the extended game in order to satisfy
the client requirement, AER1; “each airspace in your game must contain at least 2 landing and take-off options”. AER1
is satisfied by having two different airports; BHD and DHB airport, to support the landing and take-off of each player’s

set of planes.

The client’s third requirement, AER 3; “Add a handover facility to the game, so that one player can pass responsibility
for a flight to the other player” is satisfied by the handover feature implemented in this extended version of the initial
game, this handover command allows one player pass the responsibility of a flight to the other player. To avoid one
opponent swamping the other and ensure that the game was still fair whilst being competitive, we have also
implemented a cool down feature to support the handover command; The scoring and penalisation mechanism has
been implemented to encourage players to aim at gaining points in the game and following the game plot, hence a
competitive and immersive experience. The satisfaction of this requirement means that the customer’s previous
requirement to end the game once a collision occurs no longer holds in the game play.

Previous requirements from assessment two and three are also satisfied in the game play if they are practical and do
not counter the multiplayer feature. The list and details of these previous requirements and how they are satisfied in
the game play are documented in the test report.

DESIGN OF THE EXTENDED GAME’S INTERACTION

Menu: There are four buttons presented to the user in the menu interface; ‘Help’, ‘Versus mode’- multiplayer,
‘Challenge mode’- single player and ‘Quit’.

Help: When the player clicks on the help button, the game displays a screen which describes the mechanics and
controls of the game to the user-the user manual. This event is handled by the Menu state class in java which handles
the game state. When the help button is clicked, the conditional statement which handles all four buttons in the
menu handles this request accordingly. This is opened in the web browser.

* Quit: The quit button basically quits the game and closes the window using the command given in the conditional
statement when the quit button is clicked.

* Versus mode (Multiplayer mode): When the ‘Versus Mode’ button is clicked, the game goes into the multiplayer state
and the Multiplayer state initialises the airspace which contains the airport, entry and exit points.

* Challenge mode (Single mode): When the ‘Challenge Mode’ button is clicked, the game goes into the single player
state and this state initialises the airspace, the airspace contains the airport, entry and exit points.

* The game is entirely keyboard driven, when any flight is created by the Update method, it will be automatically
designated to a “red” or “blue” controller. If there is a flight designated to a controller in the airspace, the flight will be
automatically selected by the controller. i.e. provided a controller has been designated a flight(s) that is in the
airspace, they must select one.

e Controls:

o The buttons are arranged into blocks on the keyboard to allow for multiplayer usage; it is possible for each
player to control their designated planes effectively with only one hand.
o All the controls are stored in a key binding’s class in Java which allows for easy modification of the controls
(maintainability). Controls are handled in the controls.java class.
o The update method in controls.java listens to the keyboard and the event of a key press, causes an event
which calls the method needed by the action bound to this key.
o The interactivity of the game over screen is dependent on the fact that a player could either play another
game or just quit.
= Red player
* Climbing = Key W, S= descending, A= Left, D=Right, E=Accelerate, Q= Decelerate, X and C=
Change flights in the controllers list of designated flights, V= Context sensitive for the airport
(Landing and takeoff), B= Handover.
= Blue Player:
* Climbing = up arrow, descending= down arrow, Left= left arrow, right=right arrow, [:
decelerate, ‘]’: accelerate, ‘.’ and, ‘,” change flights in the controllers list of designated flights,
L= Context sensitive for the airport (landing and take-off), ‘ ;’= handover.

* When a player goes through a waypoint successfully they gain points. In the multiplayer mode, once a player has
reached 3000 points they are declared the winner and the ‘win’ interface is displayed. The ‘win’ interface gives the
players the options of playing the game again, quitting or returning to the main menu.

* When there is a crash in the ‘Versus mode’, points are deducted for each plane from the player or players involved in
the collision and the game continues. In the challenge mode, the game ends. And the game over interface is displayed.
The game over interface gives the player the options of playing the game again, quitting or returning to the main
menu.

* Inthe event of a handover being initiated by a player, their selected flight is handed over to the other player on the
basis of a unilateral decision. The game doesn’t pause during this process, and there is a cool down period for each
player where they can’t handover any of their flights. The cool down period is displayed as a countdown at the bottom
of the screen.

* Each player is able to identify their planes through the colour coding used in the game. The planes in the airspace are
either red or blue.

Justification of interaction design: The design of the games interaction helps with making the goal of the game obvious; the
theme of the GUI as well as the penalisations and scoring mechanism have been implemented to help a player understand the
game plot. The inclusion of a score for each player, and scoring and penalisation mechanisms that apply to each players score
ensures that the game is competitive but also discourages players by penalising actions that could potentially monopolise the
game, ensuring that the customer’s requirement for the game to be “competitive and collaborative” is satisfied. Another
requirement that is satisfied by the availability of a score for each player is AER2- “Add a multiplayer mode to the game, so
that (at least) two controllers may compete”. This requirement is also satisfied by the option of a “Versus mode” in the main
menu.

The two separate sets of keys with identical functions that have been programmed to work in this game; one set to each
player, also support the implementation of a multiplayer mode in the game. This is because they ensure that the two players
can both control their designated flights to the same degree hence facilitating the multiplayer mode and ensuring AER2 is
satisfied. The colour coding of each flight to indicate which plane/planes are controlled by which player, and the compulsory
assignment of each plane to a player also facilitate the satisfaction of the requirement, AER2.

The interaction design was sketched in a scrum meeting before being implemented to ensure coherence™.

MODIFICATION OF THE SOFTWARE

Code libraries/ Framework: Our game was built on team PSA’s assessment three game, which was itself built on team WAW’s
assessment two game. All of these games used the Slick2D library to handle graphics and user input. As with every other
team’s product, our game is built using Java.

* Achievements.java: This class has been removed. This is because we wanted to keep as many common features as
possible between the single player and multiplayer games and there was no obvious place for an achievements system
in the multiplayer experience; especially as the amount of work required to convert this code for multiple instances
(one for each player) was not worth attempting given that there was no requirements given by the client for an
achievement system and we were working to a tight deadline.

* Airport.java: The Airport class has been modified to be a subclass of Point which makes it simpler for other functions
to access the location of an airport. The class’s constructor has also been modified to allow for multiple airports in the
airspace. There is also one new function, getinverseRunwayHeading, which is used to simplify the code that allows the
flights to land from either end of the runway.

* Airspace.java: The Airspace class has been modified to include an extra field (isMultiplayer) which is either true or
false and is set when the airspace is constructed depending on whether it is constructed from the PlayState or the
MultiplayerState. Taking into account the fact that flights now have an owner; either “red” or “blue,” or “single” for
flights in the single player mode, new functions have been added; isFlightWithOwner which returns true if a flight
exists with a given owner, and getListOfFlightsWithOwner which returns only the flights with a given owner. These are
used heavily by the Controls class as each Controls instance is only concerned with one person’s flights. The newFlight
function has been modified slightly so as to randomly assign each new flight to either the red or the blue player in
multiplayer mode. There are also changes to allow multiple score tracking instances, one for each player in the
multiplayer mode; consequently the getScore function was modified slightly to take a parameter to determine which
player’s score to return. There are also a few changes to allow multiple airports in the airspace including in the render
function and in theNewFlightFunction when generating the entry point for a new flight. The rate at which flights
spawn was increased slightly so as to counteract the perception of flights not being created quickly enough in the
multiplayer mode. This class also controls the handover cool down period , this feature is controlled by these functions
in this class: resetRedHandoverCountdown, resetBlueHandoverCountdown which are called by the flight class when a
handover is initiated, and isRedAbleToHandover, isBlueAbleToHandover which are queried by the flight class to
determine if a handover is possible.

* Controls.java: The Controls class was completely rewritten to support keyboard controls as opposed to the purely
mouse driven controls implemented by the previous team (team PSA) which would have not been practical for a single
computer multiplayer game of the type we wanted to build. There are two controls instance in the multiplayer mode;
each controls instance deals with flights belonging to a single player and is passed a key bindings object on
construction which determines which keyboard keys the controls instance would monitor. The controls instance also
draws the circle around each selected flight and indirectly causes the line showing the flight plan of the selected flight
to be drawn.

* EntryPoint.java and ExitPoint.java : Although we have added an extra exit point instance and an extra entry point
instance for implementing the second airport, the actual classes themselves have not changed.

* Flight.java: The main change to the Flight class has been the addition of the owner field which stores the flight’s
current controller - this can be “red” or “blue” or “single”. The render function has also been changed to draw flights

1% The sketch of the interaction design is included in the appendix.

in different colours depending on their owner. The existing system for colour coding flights by their speed has
therefore been removed and the speed is instead drawn below the flight’s altitude next to the flight’s icon on the
screen. The speed colour coding system was removed because a flight icon can practically not be coded by two
different things; can either be red or blue but not orange to prevent confusion. Changes have also been made to the
land function so it’s supports multiple airports.

FlightMenu.java: This class was for the radial menu implemented in team PSA’s ‘When Planes Collide’ and has been
deleted because we moved the controls to be implemented using a keyboard rather than a mouse. The radial menu is
not functional in the multiplayer game.

FlightPlan.java: This class has not been changed because it already supported multiple airports by virtue of their
attached entry and exit points.

Point.java: This hasn’t changed and its function still remains to store the x and y coordinates of classes that extend it.
ScoreTracking.java: This function has been changed to allow multiple instances, and a new function,
applyCrashPenalty to the controllers of a crashing flight in multiplayer. To accommodate the penalty for handovers,
the existing penalty for flight loss was used.

SeparationRules.java: This class has not been modified; the change to crash behaviour for multiplayer was handled
purely by handling the output of the existing getGameOverViolation function differently in the multiplayer state i.e. it
takes points off instead of showing the game over screen.

Waypoint.java: This class has not been modified.

QUALITY ATTRIBUTES OF THE SOFTWARE ARCHITECTURE

Performance: The software architecture of the extended game has a high responsiveness; it responds to events
instantaneously. For example, when a player presses a key from their set of keys, the function linked to the key occurs
instantaneously. This can also be seen in the scoring and penalisation which happens instantaneously as well. This
attribute of the software is obvious to the human eye.

Reliability: The architecture of this software is reliable. Its performance does not depreciate over time as it is being
operated. The architecture of the system never fails therefore, it is always available.

Security: The system is local and doesn’t have any links to the web. This makes the system immune to online threats.
Modifiability/ Modifiability: The software’s architecture supports quick and cost effective changes being made to the
system. For example, the software comprises of logical classes which consist of code that have substantial comments.
The game has also been built to simply work locally on computers so changes can be made to the code locally without
having to access servers.

Portability: the software architecture is portable to a practical extent; it can be run on laptops and desktops but not
on mobile phones or tablets.

Functionality: The system does all the work it was intended to do, this can be seen in the test report where units have
been tested and give a positive result, as well as in the requirements validation where all the clients requirements are
broken down into systems requirements and give a positive result.

Reusability: The architecture of the system has been built in a way that makes expansion and modification feasible.
The various components of the system can be removed/ replaced to create a different version of the game. The
game’s architecture can serve as a foundation for related products, as in a product line.

Subsetability: This is a significant attribute of the system’s architecture, especially since an agile methodology was
implemented. During the system’s building process, a minimal system which had completely satisfied all the client’s
requirements was made to run early on at each meeting and functions were added to it over time until the whole
system was ready and satisfied all the client’s requirements.

Conceptual integrity: The design of the system’s architecture is consistent and coherent overall. The logical classes,
the interface and other components of the system all follow a unifying theme- Air Traffic control theme; classes are
named according their purpose relating to Air traffic and the interface has been built to mirror this. The conceptual
integrity of the system also extends to the naming of variables in the source code as well as the object orientated
coding style that is used throughout.

* Testability: It is easy to create broad test criteria for the system and its components, and to execute these tests in

order to determine if the criteria are met. This attribute can be seen in the test report which tests the system and its

components thoroughly, and show that faults in the system can be isolated in a timely effective manner.

Justification: These quality attributes being satisfied in the system’s architecture ensure that the non-functional

requirements documented for this system are satisfied. More evidence is given in the test report which documents these

non-functional requirements in detail, and their tests and results accordingly.

Ul

mode option, this provides the player with a quick, simple

Changes that have been made to the GUI are as follows: 4 I J - .
Firstly, the main menu has been modified to add a versus 4 & DON \T CRASH
\ y g ~ /

and succinct method for selecting their preferred game

mode, whether it be single or multiplayer.

The main menu’s graphics have all been updated, which

gives the game a cleaner and more professional look relating S 4 CHALLE

to the game theme. This was done to give the player a more
aesthetically appealing experience when playing the game

VERSUS MODE_. -

and to differentiate our branding from team PSA’s and other Figure 1 Main menu interface of extended game

teams that adopted their product.

The sidebar/panel which was seen on the left of
the initial game’s interface has been removed.
This is because the sidebar leads to a "crammed"
airspace once you add in a second airport.
Removing the sidebar was necessary when
complying with the new requirements of making
the game multiplayer, especially requirement
AER1"™. All aircraft commands are now
implemented with keyboard input and therefore
the mouse controls have been removed. The
modifications to the controls also resulted in the
elimination of the radial menu around a selected
plane, due to it not being functional and it being
redundant.

Photorealism!

Figure 2 interface of previous game

To further satisfy the new requirements there has been an addition of another airport and a relocation of the old one away

from the centre to accommodate it. They have been placed far enough away that the player would be able to avoid confusion

when using an airport.

In addition, the planes have been modified so that if a plane is selected, its waypoints are now indicated by lines that start

from the plane icon, go through all its waypoints and end at its destination. The waypoints for a selected plane were originally

displayed in the sidebar, but with its dismissal from the game, the waypoint lines seemed the simplest and most logical choice

for the player. This allows the player to remain concentrated on their plane, changing its direction instantly, without the need

to search for specific waypoints across the game screen.

To further assist the player to provide them with information quickly and concisely, the speed of a plane has now been added

to show above a plane when it is selected. This was necessary due to speed no longer being displayed in a sidebar. Further

" Each airspace in your game must contain at least 2 landing and take-off options.

information such as the timer and score that would have been removed along with the sidebar, have now been placed on the
top left of the screen. This maximises gameplay space and the score for the red and blue player has been colour coded
accordingly, satisfying AER2™.

When versus mode is selected in the main menu, the planes have been modified so that they are either red or blue, depending
on which player they belong to. This
simplifies the game further for the
player(s), it allows them to quickly
know which plane is theirs and make
the appropriate quick decisions that
are necessary when playing the game.
This feature also supports the

Aim: ?*é\é‘ﬁﬁﬁﬂ

objective to satisfy AER2". o 200mph

Aim: B
3000ft

The GUI has been designed to support 200mph
interactions with users, it supports the
tasks users aim to carry out. Each

user’s manoeuvring of any flight is Figure 3 Screen shot of extended game GUI
reflected in the GUI design. For

example, when a user presses a key that has been programmed to turn the corresponding selected flight left, the GUI is
updated to show the flight turning left. This example also cuts across the various control commands that have been made
available to the user in the game. A closely linked example is how the scores are updated in the GUI accordingly with events
that lead to penalisation or increase in a player’s score.

The overall engineering process used to design the GUI was user-centred software engineering. The decisions made on how
the GUI should reflect a player’s interaction with the system were based on what, how and why it would be best for the user.
For example, succinct information is relayed to the user on the GUI, because users generally don’t want to have to divert their
attention to reading a block of text, as it will distract them from the objectives in the game and may reduce their score.

ADOPTED SOFTWARE ENGINEERING SOLUTIONS AND APPROACHES

This project is based on the extension of existing software, a traffic controller management game. We are the third team to
work on this software; the initial software was built by team WAW as ‘Don’t Crash’ to satisfy the client’s initial requirements™.
The software was then extended using additional requirements** given by the client, team PSA handled this extension and
labelled the extended software as ‘When planes collide’. The aim of our team, team BHD, is to successfully extend the
software further to satisfy the extended additional requirements given by the client for this third phase of the software’s
development.

As opposed to the initial time plan** which suggests that the waterfall model will be used in this stage of the assessment, we
implemented an agile approach. We made this change because compared to the other stages in the SEPR assessment; this
stage appeared to have a higher degree of complexity, and building a multiplayer game was new to us as a team. The imposed
deadline also meant that we needed to work in short iterations to keep the intensity and focus going on in the project, as well
as discover errors as soon as possible by testing and producing functional modules as part of each sprint. The major factor for
this decision was realising we had three weeks left until our deadline and we still hadn’t made any decisions about the design
and documented any changes to the software we received. This factor meant that we were totally behind schedule with
regards to our initial time plan, and as planned in our risk assessment®®, we mitigated this by rescheduling; while doing this we
took into consideration that we were now using an Agile methodology as opposed to the waterfall model that was enforced in
the time plan, this meant we had shorter deadline dates for smaller chunks of the project.

> Add a multiplayer mode to the game, so that (at least) two controllers may compete
2 The client’s requirements for the previous two development phases can be found in the appendix
14,
Initial time plan for this phase is included in the appendix
> The risk assessment document can be found in the appendix

Implementing an agile methodology gave room for experimentation, improvement and reprioritisation; all of which were
needed to tackle a task with a high complexity and one which was new to us as a team. We also involved the client (user)
throughout the process of designing and implementing the changes that needed to be made, this was done to ensure that we
were on the right path to producing an extended software that satisfies all the client’s needs given for this phase of the
software’s development. The overall design of the product was client-driven.

To use this methodology, we made effort to document what each member of the team should have completed by the next
meeting™. In these meetings, we spoke about the problems we were encountering with completing our designated tasks, how
to deal with them and came to a conclusion on how to approach the tasks that should be completed for the next iteration.
These meetings were held twice a week; on Tuesday and Friday.

The period of completing designated tasks before each meeting was like a sprint in agile technology and the meetings were to
implement scrums meetings. The main features of our implementation of this software engineering approach in this project
were; continuous improvement through time-boxed iterative deliveries and reviews, implementation of most important
functionalities first and constant collaborative communication. Our informal conversations were held via Facebook'’, while the
formal ones were done using E-mail. Our scrum meetings were held in a computer laboratory and most of our online
discussions were informal.

We used ArgoUML to create the UML model diagram®® for the product. Dropbox was used in the early stages of the project to
convey and debate possible GUI designs for the product®. Bitbucket was used as our code repository to ensure that every
team member could access it; that changes to the code could be recorded and seen by each member, and ensure that the
code was consistent and coherent throughout. Google Drive was used as a repository for our reports and plans to allow every
member access to reports and suggest or implement changes without the team losing track of previous versions.

In general, our initial approach was to use the software engineering approach specified in assessment three?’. Although we did
all the procedures the approach specifies, after carrying out the preliminary testing and modification of requirements
accordingly we decided that we had to implement an agile methodology. This meant that instead of going through the
different procedures accordingly, we did a number of cycles through the other processes in the specified approach, in no
particular order; this gave us flexibility which was much needed. For example, we would come to a conclusion about the
design of a particular functionality at a scrum meeting, review its impact analysis on testing and, the existing design and
system architecture, and then it would be implemented during a sprint and then reviewed (tested) in the next meeting. This is
a cycle that happened a number of times with respect to different attributes of the assessment, including the compilation of
reports.

In terms of team leadership, we divided the whole assessment into four parts and assigned leaders accordingly; extension
report- Aishat, GUlI documentation-Chris, Implementation- Tim and Radostin, and test report- Katie. We did this to ensure that
each part of the assessment was led effectively and so that everyone felt involved and took part in the project.

We carried out various tests to ensure that the system and its various components were tested thoroughly. We carried out

pre-extension and post-extension testing. Testing consisted of regression testing, requirements validation, unit testing, and
acceptance testing accordingly. All these tests are documented fully in the test report which should be referred to for more
details.

'® A screenshot of the documentation of tasks for each meeting is included in the appendix
7 Evidence of Facebook chats included in the appendix

¥ The UML model diagram for the software is included in the appendix.

¥ Initial proposed GUI design is in the appendix

%% This approach is included in the appendix

BIBILOGRAPHY

[1] “Introduction to Multiplayer Game Programming”, Book of Hook. [Online]. Available:

http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming . Accessed: 20/04/2014.

[2] “Evaluating a Software Architecture”, PTG Media. [Online]. Available:
http://ptgmedia.pearsoncmg.com/images/020170482X/samplechapter/clementsch02.pdf . Accessed: 01/04/2014.

[3] Team BHD Assessment 4 Test Report.
[4] Bob Hughes, Mike Cotterell , Software Project Management. Berkshire, England: McGraw-Hill,2002.

APPENDICES
Appendix 1:
Previous Requirements

Extension requirements (Assessment 3):

©o0NOULAEWNRE

10.

11.
12.

13.
14.
15.
16.

17.
18.
19.

20.

21.
22.

23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.

34.

35.
36.
37.
38.
39.
40.
41.

An aircraft can land at an airport - ER1.

An aircraft can take off from an airport - ER2.

Airports must exist and be visible to the user - ER3.

There must be constraints on how many aircraft can land or take off at any one time - ER4.

Flight plans must be able to enter and land at an airport or take off from an airport and exit - ER5.
The score must be displayed for a particular game while it is being played - ER6.

When a game has finished, the score should be added to a list of high scores - ER7.

The list of high scores should be available for the user to see - ER8.

At least ten flights should be allowed in the airspace at any one time - ER9.

Initial requirements (Assessment 2):

Have access to an in-game “help” screen - it is important for new users to be able to understand the mechanics of the
game - UR1.

See airspace - the game is simply meant to emulate the daily work of an air traffic controller - UR2.

Start the game after examining the airspace - since the airspace in the game might be new and complicated for the
player, they should be able to examine it before getting into the game - UR3.

Alter the course of flights that enter the airspace - without this ability, the game will lack any gameplay whatsoever - UR4
Direct flights towards waypoints - the simplest way to direct flights - UR5.

Have flights land and take off - a “landed” flight is a possible way to score points - UR6

Know how much time they have spent in the game - a way to help the player score and weigh down their own
performance without necessarily ending his game - UR7.

See a score, which will be a way for the player to assess their own performance — URS.

Have a feeling for “challenge” - provide an online leader board to create an impetus for users to play the game - UR9.
Be able to “lose” - without a challenge and a risk of losing, most games are perceived poor by critics and players alike -
UR10.

Be able to quit and see a high score without “losing” - a simple preventive option, meant to be used if the player would
want to quit playing before actually losing the game - UR11.

Be able to pause and restart the game “at will” without exiting it - UR12.

Have a main menu - the easiest and most common way for interfacing between the player and the game prior to the
launch of a game session - SR1.

Have a help/instructions screen - in direct relation to UR1 - SR2.

Have a “start” button for the user to start the game - in direct relation to UR2 - SR3.

Generate an airspace - without having the system create a random or predefined airspace, no gameplay can be
conducted - SR4.

Simulate airspace graphically - the best and most engaging way to present the game to the players - SR5.

Populate the airspace with flights - without flights, the game will be exempt of gameplay -SR6.

Have a GUI with a score and a timer - a GUI allows for easy and engaging control of the game by the user - SR7.

Have varied characteristics for flights - variety is a great way to improve the player experience - SR8.

Display score - in direct relation to URS8 - SR9.

Save score - in direct relation to UR9 - SR10.

Upload score to a master repository - in direct relation to UR9 - SR11.

Monitor separation rules - separation rules are an authentic way to provide a challenge for the players and challenge is
very important, as previously stated - SR12.

Generate and remove flights from the airspace via entry and exit points - the game must persistently give the player
flights to manipulate - SR13.

Pre-set a flight plan - when flights come into the airspace they should have a sensible flight plan - SR14.

Alter a flight plan - players should be able to manipulate the flights in the airspace - SR15.

Change course - in direct relation to UR4 - SR16.

Change altitude - in direct relation to UR4 - SR17.

Land at airport - in direct relation to UR6 - SR18.

Take off from airport - in direct relation to UR6 - SR19.

Turn left or right by particular degree - in direct relation to UR4 - SR20.

42. Display updates regularly - if updates are not regular enough, the game will feel unresponsive and “stutter”-y, which will
decrease player immersion and enjoyment - SR21.

43. Have waypoints - in direct relation to UR5 - SR22.

44. Occasionally set flights on crash course/near miss - without this feature, the game will mostly lack challenge - SR23.

45, Simulate bad weather - a feature that will provide greater challenge to players - SR24.

46. Simulate equipment failures - a feature providing greater challenge to players - SR25.

47. Have a quit button - the player must be able to exit the game seamlessly - SR26.

48. Game becomes harder as the timer goes up - to provide an increasing challenge arc and keep the player engaged - SR27.

49. Have a pause /resume functionality - SR28.

Non-Functional Requirements
These aspects of the game will increase player enjoyment and immersion, but all these requirements need not be satisfied in

order to have a working product:

oEfficiency (reflect changes within 30ms) - Faster updates will provide for better and more agile decision making on the users’
part.

oDocumentation - Made even more important due to code switching.

oTestability —i.e. can we test that we have fulfilled our requirements?

oStability - a game filled with bugs is not an enjoyable one.

oReliability - The game must behave consistently, to stop players from feeling that the game has “artificial difficulty”.

oMaintainability - code must be maintained for all 3 assessments.

oExtensibility - code will be built up and improved upon in 3 distinct steps, therefore must be easily extensible.

oAccessibility — features such as colour blind mode or large font to allow for a wider audience to enjoy our games.

oOpen source - the code will be shared between groups, thus being open source, though not necessarily free software, is
absolutely necessary.

oTime-to-market - our team works on a tight schedule and must adhere to it.

olmmersion - features such as advanced graphics and/or sounds can increase player enjoyment.

o) Update website

Appendix 2:
Software Approach Diagram

Preliminary testing

Modification of initial requirements.

Impact analysis of modified requirements on initial software
architecture.

Impact analysis of modified requirements on the initial
design.

Impact analysis of modified requirements
on the initial GUI

Impact analysis of modified requirements on
test plan

Implementation of new design

Implementation of new GUI

Testing using modified test plan

Debugging

Appendix 3
Notes from meetings

Agile sprints for summerterm

® Tim: start implementing score tracking and multiplayer function.

* Notes:
o Control radials were not multiplayer friendly.
o Multiplayers sharing keyboard

Fri/Wk1 to be done by Tue/Wk 2

e Katie:Initial regression testing and validation written up

® Writing manual requirements testin a ready to run format.
e Chris: completed GUldocument

® Aisha: complete game plot/ mechanics

Tue/Wk2 to be done by Fri/wk2

e Katie and Chris : Acceptance testing
® Aisha: Complete design interaction part of report
e Tim: User Manual

Fri/wk2 to be done by Tue/wk3

e Katie:finish all of testreportapart from unit and regression testing sections.
e Tim:UserManual
e Radostin: Unit tests

® Aisha: Finish remaining sections of the extension report

Figure 4 Evidence of rescheduling using Agile sprints implemented in summer term.

— — - PR P

easter plan |
File Edit View Inset Format Tools Table Add-ons Help Last edit was made on March 13 by Katie Onyett

& e ~ " 100% - Normaltext - Arial - 1 - B Z UA- coH E
—

1 1 2

[t 5th march - 20th april

To do: (not necessarily in correct order)
- patch PSA's tests

- regression testing

- implementation

- testing

- extension report

w

- more info about software engineering approaches

Figure 5Notes from meeting on the 13th of March to plan tasks to be completed during Easter.

Jls Table Add-ons Help Last edit was made on March 13 by Katie Onyett

Further Requirements

FR1 - there must be at least two landing and takeoff options (such as airports) for the airspace
FR2 - there must be a game mode where at least two people can play at the same time

2.1 - there must be a score for each player

2.2 - there must be a full set* of separate keyboard controls for each player

2.3 - there must be indication of which plane/s are controlled by which player

2.4 - each plane must be assigned to a player
FR3 - there must be a facility in the game when at least two people are playing such that control
of a flight can be handed over from one player to another

*A full set of controls allows the player to select a plane, land, take off and adjust the altitude,
speed and heading of a flight.

ER1-5 all need to be fulfilled for FR1 to be fulfilled
ERG6-7 are needed for FR2.1

unsure about ER8 and ER9

SR1-8 already fulfilled for basic gameplay

SR9 needed for FR1 (see ER6-7)

unsure about SR10-11

SR12-22 already fulfilled

unsure about SR23-25 and SR27

SR26 and SR28 already fulfilled

no specific requirement for losing the game if a crash or similar?
- allow crashing but cause large points dock as a result
- TCAS? (though large points dock anyway)

i & ‘ £ o

. . ;

- handover initiated by player

- not allowed to handover for some time afterwards

- unable to handover while separation rules are violated
- each player has separate handover timeout

Figure 6 Notes from meeting on the 13th of March — breaking down and sketching of official requirements.

Add-ons Help Last edit was on March 31 Comments n

Revision history

multiplayer mode: March 31, 3:48 PM
- one player tries to sabotage the other’s efforts? W Aishat Animashaun
- swapping planes between players at set times - more time if player gets plane through March 13. 11-44 AM
waypoint (starting amount of time could be say 20 secs?) W Katie Onyett
- planes have weapons?? (don't crash - battle of britain expansion)

March 13, 10:56 AM
- race? .) W Katie Onyett
- each player selects one plane out of all of them and gets points based on waypoints and/or
airport which they get that plane to March 6, 11:39 AM
- split screen M Katie Onyett

February 27, 11:13 AM
M Katie Onyett

- network? - this requires less editing of the GUI

- mouse vs. keyboard?

- turn based?

- each player can land at one airport and take off from the other

- restricted # planes allowed to be landed @ an airport @ any one time
- crash / separation violation causes large loss of points

- increased time in airport - deduction of points

- popup notification of need to land planes (fuel gauge?)

- win situation?

- potential networking problem of matchmaking (unsure if enough time to take this into account)

- each player has responsibility for several planes (controlling one at a time) but can hand them
over to the other player

- one airport belonging to each player
or land @ one, take off from the other?

fuel as incentive to land?

Figure 7 Evidence of brainstorming for implementation ideas, our ideas changed over time as seen in the revision history.

SEPR BHD 2013 4 people + New Message 3% Actions v Q |

implementation

Chris Harrison
. Katie and | are doing the Acceptance testing.

Was the GUI justification alright?

. Radostin Nanov

You mean removing the radial menu and sidebar? Totally. They do not fit
in with a multiplayer game. The radial menu is not functional and the
sidebar leads to a "crammed"” airspace once you add in a second
airport.

I Moradeyo Aisha Animashaun

Ok thanks. | haven't really looked at it in detail. I'm hoping to clean up
my part of the report tomorrow and then copy the GUI report in, then |
can see how it ties in with the whole report. I'll let you know if anything
needs editing on Thursday

Katie Onyett

I've emailed Tim Kelly asking about when to meet for acceptance testing
and have cc'd you all in the email - | think that the acceptance tests are
mostly done but would like everyone to have a good check over them
tomorrow. Also, Tim and Radostin, do you have a version of the game
which you are happy to use for acceptance testing?

. Radostin Nanov
| am. Game can be tweaked around, touched up and balanced a bit, but
the core mechanics are in-place. Tim?

Katie Onyett

| intend to finish all of the test plan report apart from the unit and
regression testing sections since | need to hear from Radostin and Tim
about those when they've finished them

Figure 8 Evidence of communicating goals for each sprint via social media

Lﬂ.-l‘» LJ é\a,:-\-\..;:

h P '- sz |
w‘ﬁ ma’wlz

?‘\’é‘ (!r&\{/\ y
?uulmjlf’f Lodutc v :

¢ _an.wl?t ’\(rijbw wcj”*‘“f ir(‘m&%v
Ay %\“T“Ij:”"@ . s qu 3 hdSs
v v B .
a \kﬁ} :frrw'a(u.i}c"th- \
> | Seg Mﬂ. AN
Tl s 7 R Q’mi 0y o

G £ iy w"
St G] \ (_Lfa 633
| " . . .‘./ »)
B %’ "!.“ g R ‘:J muh!‘w
;\ ? e l‘r kbt Wy .

Zoop Feaid bime
'¥u‘3 . ﬁfi‘-ﬂ M

| Mo
W i 1

~ Q..U,,«l\.d}q}f £ A L i) M>N@M» P
- i}\@\aﬁ(Y 7 # ko Wt

VAR -

Appendix 4:
Interaction Design Sketch

Appendix 5: Initial time plan from Assessment 1

Gantt Chart

ermososmze e

s LAY

st oAy

Appendix 6: Evidence of evaluating other approaches to the GUI and control design
sidebar removed and airspace

expanded to fill whole window Single Computer Multi-Player Proposal

timer moved to the centre blue player’s score

Turbulence
L 00:01

67200 :
PRy G. 1. EXP4 | red player’s score
l‘r""’" 2LLen (actually at left edge of

the window itself) radial menu removed and game
moved to fully keyboard control
A

flights colour-coded
by the player they
are controlled by

/G-ACHE™,
Aim: G !

8 ; i

side of the boundary line %3000 ft

One smaller airport on each

Airspace divided into two, with each player Suggested Keyboard Controls
responsible for half. Planes transfer between the two) I K
players automatically on crossing the boundary. Turning and altitude WASD Cursor keys
Increase / decrease speed Q& E J&K
Possibly a slight red/blue colour filter on each side of Cycle between flights C&V &

the airspace to make the distinction even clearer. Land / Take-off B L

Appendix 7: Plan for Assessment 4 produced as part of Assessment 1

Assessment 4

This assessment is due at Noon on the 7th May. The swapping phase will take place over 2
weekdays and one weekend. The requirements change document will then be issued on the
following Monday, giving 5 term-time weeks to complete the second phase of the assessment.

Swapping Phase

We can plan to follow almost the exact same procedure as in the Swapping Phase of the previous
assessment, although we will be swapping the roles of the two sub-teams around.

Re-planning (assigned to Aishat, Chris, Katie)

e Receive a list of required changes from the customer
e Review these, clarifying any necessary points with the customer, and make any necessary
alterations to our project plan / requirements / specification etc.

Implementation of the changes (assigned to Radostin, Valentin, Tim)

e While the other half of the team is in the re-planning phase, use that time to get familiar
with the inherited codebase, any technologies used therein and so on.

e Once the plan has been drawn up, move on to implementing the tests required in order to
verify the new / changed requirements.

e Then it should be safe to start actually implementing the relevant changes, following a
somewhat similar chunking procedure as that defined above

Marketing (assigned to Aishat, Chris, Katie)

e Update the game manual in the light of both the moving to another team’s product, and in
the light of the change requirements for this assessment.
Similar updates to the team website and the online documentation thereon.
Start to update the test plan (not actually writing tests though)

Change Report (task leader to be decided)

e Meeting for each of the members (of the implementation team in particular) to feed back
information about the challenges encountered in implementing their part of the
requirements changes, details of the affected elements and any architectural changes
required by the implementation but not actually specified in the requirements.

Decide the division of labour in actually writing the report.
Task leader to compile the document together, ensuring consistent formatting and “voice”.

Wrap-Up (to be done as a whole group)

e Follow the same testing, merging and website updating procedure as given in the first few
bullet points under the Wrap-Up section of Assessment 2.

e Package all game code, and any required dependencies, into a single directory (Game4)

e Convert the final versions of the user manual, the test plan and the change report to PDF.

e Create a text file with the URL of the team website (url4.txt)

e Prepare self-assessment form, if necessary (SelfAss4.pdf)

e Zip into a single file (BHD.zip) and then submit.

B logicClasser
G Pausesiate

PR Ry s

@ Keyindings.

Appendix 8:
UML Model Diagram for Extended Game

il

G Fightpian

G Fight

Appendix 9:
Assessment 4 Implementation Plan

Draft 2 — 30/Mar/14,

Menu Screens

Replace the single “Play” button with two new ones, for playing in single- and multi-player modes
Remove the credits screen and replace with a link to the team website (as we did in the last assessment)
Update the information on the controls screen, with details of the new keyboard control scheme

Also consider whether to add a direct link to the user manual

States

e Fill out the MultiPlayState class
e Edit (and potentially rename) the PlayState class to be consistent with the new multi-player mode

Airspace

Remove left-hand sidebar, and move the clock to the top-centre of the screen

Change the background image to match our own design aesthetic

Remove instantiation of Controls from the Airspace class and into the game states

Edit both the SeparationRules and MultiPlayState classes to make collisions non-fatal in multiplayer
games

Controls

e Remove the radial menu, which is the FlightMenu class

e Also remove all the mouse control functions in the Controls class

New util.KeyBindings class, that will contain a HashMap linking game functions (e.g. “turn-left”) to
keyboard buttons (e.g. Input.KEY_A)

Change Controls class to allow multiple instances, one for each player in multiplayer

Each instance will take a KeyBindings object on creation to define the buttons it will handle

Implement commands for cycling between planes using the keyboard
Investigate how we can meet/relax the requirement for being able to turn planes to an arbitrary heading

Scores

e Add capability for multiple instances to the ScoreTracking class
e Potentially have the ScoreTracking class render itself
e Add point additions and deductions for multi-player events:

— Deduct a large number of points from the controllers of both planes involved in a collision
— Deduct a smaller amount of points for each separation violation

— Add points for a successful, planned hand-over

— Deduct points for an unplanned handover

Airports

e Ensure the Airport class can cope with multiple instances

e Add functionality for storing planes, and for automated handover of landing planes
e Airport will also need an owner field

e Actually add a second airport (to both gameplay modes)

Flights

e Add a variable and getter/setter for the flight’s owner
e Change drawFlight function to colour-code by owner (in multiplayer) instead of by speed
e Potentially add fuel, or similar, functionality to force players to land planes

Risk assessment and mitigation

Appendix 10: Risk Assessment from Assessment 1

The risk assessments for this project were inspired by a series of lists of common software engineering risks found online (see the references list
at the end of this document), which we compared to the project to see if they apply in our context. We also held meetings to go through each
phase of the project in order to identify possible risks. In identifying the mitigations for each risk we have taken into consideration the fact that this
is a university project. Where a higher authority is needed to resolve an issue we have decided to refer to the module leaders for mediation.

In the table below column | represents the impact of a particular risk and column L represents our assessment of its likelihood.

Risk L | Mitigation Plan

1. Unreasonable delivery deadlines H | We will use the final assessment submission dates and effort required to complete each tasks to

fixed in project plan: recalibrate the delivery date for tasks in the project schedule whilst conferring with team member(s)
availability. At present no SEPR work has been scheduled over the Christmas and Easter breaks, as
a last resort these weeks could be used in order to catch-up with Assessments 2 and 4 respectively.

2. Inconsistency of the customer’s L | We will organize a formal requirement gathering session where the client and all team members must

needs relative to the product: be involved, and ensure that all requirements recorded/rectified during the meeting are specific for
traceability.

3. The customer shows a low M | We will organize formal gathering meetings with the client where a written understanding of his needs

understanding of what they require from is presented; go through them explaining how it affects the final product whilst letting him make

the product: changes as well as keeping him updated and manage/inform his expectation throughout the project.

4. Unavailability of the customer for M | We will organize to contact him on another platform such as Skype or send him emails concerning

meetings: the planned questions or topic for any meeting he is unavailable to attend.

5. If there is no establishment of rapid L | We will go to meet him at his office to fill the communication gap, talk to him after lectures or contact

communication links with customer and other module lecturers about his unavailability. If a team member is unavailable, we will try to get in

our team: contact with them by phone (we have exchanged mobile numbers already) and email.

6. Lack of knowledge amongst the team M | Use resources (such as the programming language and graphical toolkit) that are already reasonably

members of tools to be used during the well known to the team as a whole. If needed, make use of resources such as online help,

product development: documentation, and the module demonstrators. Where possible, stick to the initial chosen resources
to avoid the delays associated with re-tooling midway through the project.

7. Failure to perform and document H | Team member(s) will be assigned to the role of quality assurance keeping/ testing which will involve

procedural reviews regularly: analysing to validate and verify each task to ensure that it is of high quality satisfies the requirements
and ensure all deliverables consistent and flow/match each other appropriately.

8. Unavailability of means to ensure that M | Research software engineering standards and apply them in practice.

project conforms with software

engineering standards:

9. Unavailability of mechanism for
adapting to requirement changes:

Use Agile requirements change management: Do just enough initial requirements envisioning to
identify the project scope and develop a high-level schedule and project plan. During development we
will storm in a just-in-time manner to explore each requirement in the necessary detail.

10. Unavailability of documentation from
chosen team during integration and
extension phase.

Conduct formal meeting with chosen team to provide us with documents and if no documents are
available and we’re unable to change the team we’ve picked, conduct a formal meeting to gather vital
information needed for adequate extension and understanding of the chosen code.

11. Unavailability of the right
combination of skills within the team:

Engage the affected team members in training/ research using available resources to educate or
provide knowledge in lacking areas. Consider re-allocating tasks if that isn’t feasible in the timeframe.

12. Unavailability of enough committed
team members:

Encourage each team member to engage in decision-making tasks. Ensure that there are backup
plans that take into consideration the possibility of delay in the delivery of a particular task due to
unavailability of the relevant team member. Mission-critical tasks should not ideally be assigned to
only one team member.

13. No specific methods used for
analysis:

Specific analysis methods for software, architecture and requirements development will be
researched and applied.

14. No tools used to support planning
and tracking activities:

Frequent peer reviews. The code base is to be stored into a shared repository via Bitbucket, whose
tracking tools we will use. Documentation will be in a cloud folder accessible to all team members.

15. No prototypes:

Early versions of the product, such as the assessment 2 deliverables, will serve as prototypes for
later versions.

16. Unfamiliarity with the product to be
built

Research subject area of product as well as important terminologies needed to ensure that the game
qualifies as an air management traffic game.

17. Creation of an optimistic schedule
that is “best case” rather than realistic

Prevent creating the project plan assuming that all parts will take the most optimistic path possible
and instead leave space/time for unpredictable errors/mistakes that may delay the delivery of each
path. Time given to each task should be realistic and the longest possible without the project
suffering.

18. Exclusion of tasks from schedule:

Monitor the existing project closely and realistically. Breakdown requirements specification into
smaller tasks and reschedule action plan when necessary.

19. Underestimation of product size in
terms of lines of code and function
points:

Carefully execute/ or briefly run through the design-process as a team again to prevent waste of
programming hours. Increase number of team members coding and create stricter deadlines to
ensure project is completed by final deadline.

20. Reduction of productivity due to

Analyse schedule and reschedule task delivery dates taking into consideration the time required by

schedule pressure:

the team member supervising the task to complete the task.

21. Cascading delays in interdependent

tasks:

Reschedule immediately and stick to it to prevent loss of time to complete the project. Involve more
people in current tasks causing delays.

22. Team members insist on decisions
that lengthen the schedule

Discourage adding of unnecessary features that deviate from the initial project plan to prevent waste
of programming hours.

23. Reduction of productivity due to
poor team structure

Divide each phase of the project into various tasks where each team member is assigned
responsibility for supervising the completion of a task(s).

24. Excessive time spent at meetings

Conduct regular meetings where the duration, the purpose of the meeting (agenda) and the expected
outcome are stated and minutes are shared.

25. Inaccurate status reporting

Have a communication plan to ensure every team member is regularly informed. Have a general
action plan available so each team member can tick off completed tasks so that everyone is informed
of the status of the project.

26. Planning too poor to support the
desired development speed:

Ensure specification is clear, complete and detailed enough to prevent conflict between requirements.
Then break down tasks into smaller blocks for more accurate and detailed planning taking into
consideration final deadlines.

27. Inadequate facilities:

Try to make do with the facilities available, or speak to the Department’s technical support or the
module leaders should any problems arise. We have evaluated alternatives to the 3" party cloud
systems that we are planning on using (see details in the relevant section of the Project Plan).

28. Development tools do not work as
expected:

Ensure that the team as a whole is familiar with development tools chosen initially, use available
resources for help or contact technical team or module lecturers for help.

29. Customer insists on new
requirements:

Manage new requirements using the agile method and reschedule the Project Plan accordingly. As
new requirements are expected in Assessment 4 we have built some leeway into that plan already.

30. Team does not solicit customer
input

Ensure client is involved in the planning of the project and gathering of requirements. Keep client
updated and in order to manage his expectations.

31. Customer will not participate in
process reviews

Refer to initial documentation of requirements by client and try to interpret it to the best of the team’s
ability. If changes need to be made, use the agile method and reschedule project plan as appropriate.

32. Customer will not accept the
software even though it meets all
specifications

Check that all deliverables conform to the file format specified by the module leaders in the
assessment document. Make sure that we aim to submit all the assessments in plenty of time, so as
to allow for any last-minute failure of the Department’s electronic submission systems.

33. Other teams are late to deliver; or

Ensure that all available code for the integration and extension phase is understood before selecting.

deliver components of low quality

We have built time for familiarisation with another team’s codebase into the project timetable

34. Some sections of the project require
more work than expected:

Re-evaluate project plan, analysing and breaking down each assessment phase or task into smaller
task blocks and update the project plan immediately. There should be some slack in the plan already.

35. Development of extra software
functions that are not required

Discourage adding of unnecessary features that deviate from the initial project plan to prevent waste
of programming hours. Hold regular meetings to ensure everyone stays strictly in line with initial
decisions.

36. Conflicts within the team

Some “storming” within the team is expected, and perhaps even necessary. We should that we listen
to each others’ perspectives, and should not be afraid to ask the module leaders to intercede.

37. Low motivation and morale reduce
productivity:

Set a realistic schedule immediately and try to stick to it to prevent loss of significant time to complete
the project. Hold meetings where everybody’s progress is assessed and team member(s) having
problems can be helped.

38. Loss of work:

Ensure that work is uploaded to group repositories to prevent loss. Should work go missing, team
members will try to recover from personal directories (git makes this easy as each clone contains all
repository history). We should reschedule as needed and consider informing the module leaders.

39. Inappropriate design:

Hold a meeting to re-evaluate design in line with requirements and make changes with the customer
involved. Update project plan as appropriate.

40. Incorrect use of unfamiliar
methodology:

Hold meeting to pick out reasons why the methodology was used in a wrong way, evaluate how it
was used wrongly and use available resources to pick out mistakes and inform the team of the
correct way to use the methodology.

41. Components developed separately
cannot be integrated easily:

Ensure that meetings are held to conclude on how components should be developed and encourage
members to adhere to decisions. Components should be committed to the repository regularly so that
other members can review them, and should stick to pre-agreed interfaces where practical.

42. Half-hearted risk management fails
to detect major risks

Ensure that possible risks are discussed regularly as well as their mitigation process in meetings.
Identify, assess and prioritize each risk and ensure that they are managed closely.

43. Failure to consider product target
market

Ask the customer about the target market of the product, ensure that research is done into the target
market and ensure they are taken into account when gathering requirements. Review regularly to
ensure that the product appeals to the market. The project plan should be updated as needed.

44 Insufficient documentation delivered
to the customer:

Ensure that all deliverables listed by the customer are taken into consideration when planning the
project and allocating tasks and that all tasks are accompanied by appropriate documentation.
Attempt to play-test the game using a volunteer unfamiliar with our code-base.

